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Modeling Survival Curves in Light

of the General Theory of Aging

Several issues back I wrote:1

In Addendum to Aging: Cause and

Cure, three long-lived mice were of spe-
cial interest.2 The oldest of these three

mice was still living when the adden-
dum was published. She died about two
months later. I am eager to report on

the implications of this mouse’s unusu-
ally long life span, but I need to lay some

groundwork before doing so. To begin
with, I need to introduce a general theory

of aging to provide a scientific framework
within which to understand and discuss

the phenomenon of aging in a general-
ized way. I expect to follow this with

a quantitative analysis of how the anti-
aging vitamins are likely to alter human
life expectancies. Once this groundwork

has been laid, we should be ready to have
a look at the significance of the final long-

lived mouse’s unusual longevity.

I have finished laying the groundwork men-

tioned above, but I find that there is yet more
groundwork needing to be laid. The General The-

ory of Aging developed in BC102,3 BC103,4 and

1Gerald E. Aardsma, “A General Theory of Aging: Part
I,” The Biblical Chronologist 10.2 (February 12, 2020): 1.
www.BiblicalChronologist.org.

2Gerald E. Aardsma, Addendum to Aging: Cause and

Cure (Loda, IL: Aardsma Research and Publishing, July
26, 2019), page 8. www.BiblicalChronologist.org.

3Gerald E. Aardsma, “A General Theory of Aging: Part
I,” The Biblical Chronologist 10.2 (February 12, 2020): 1–4.
www.BiblicalChronologist.org.

4Gerald E. Aardsma, “A General Theory of Aging: Part
II,” The Biblical Chronologist 10.3 (March 4, 2020): 1–4.
www.BiblicalChronologist.org.
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Figure 1: Survival curve data for modern U.S. males.

BC105 5 sheds new light on survival curves, and

this affects how they should be analyzed. Before
entering into a discussion of the implications of the

long-lived mouse’s life span, the method that will
be used to analyze her group’s survival curve data
needs to be explained. Consequently, this issue

is devoted to technical background material which
many lay readers may want to skip over. There

is no harm in doing so. A look at some impor-
tant implications of pre-Flood human life spans is

planned for the next issue, and a discussion of the
long-lived mouse is planned for the following issue.

Data Analysis Method

Figure 1 shows survival curve data for U.S. males.
These data are for the year 2016 from the United

States Social Security Administration’s actuarial

5Gerald E. Aardsma, “A General Theory of Aging: Part
III,” The Biblical Chronologist 10.5 (March 31, 2020): 1–5.
www.BiblicalChronologist.org.
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tables.6 They will be used in the following pages

to illustrate the least-squares data analysis method
which the General Theory of Aging prompts.

The Model

Traditionally, the Gompertz function has been

used as a model for survival curve data. The Gen-
eral Theory of Aging reveals that this function is

not entirely right for the job.
The Figure 1 survival curve is clearly dominated

by aging. That is, most of the deaths are due to
aging. That is why the number of survivors falls
off so rapidly after about age 60—aging is killing

nearly everybody off.
While aging is the dominant cause of death, it is

not the sole cause of death. The data of Figure 1
contain an admixture of deaths not due to aging.

For example, there is a noticeable infant mortality
in the very first year of the graph. Less conspic-

uous, but equally real, are deaths due to traffic
accidents. In fact, there are deaths due to hun-

dreds of causes other than aging in this dataset:
everything from homicides to lightning strikes.

Let us call deaths which are not due to aging,

“extraneous” deaths. The Figure 1 graph is made
up, then, of two components: (1) deaths due to

the aging disease and (2) extraneous deaths.
The Gompertz function is, in general, not well

suited to describing extraneous deaths. We have
previously seen that the Gompertz function de-

scribes an exponentially increasing probability of
death per unit time with calendar age.7 There

is no reason why the probability per unit time of
being struck by lightning should increase exponen-
tially with the calendar age of the individual be-

ing struck. Does a 40-year-old have a much greater
chance of being struck by lightning than a 20-year-

old, and does a 60-year-old have a yet much greater
chance of being struck by lightning than a 40-year-

old?
The Gompertz function is an approximation

only. It smears together many independent causes
of death, most of which are not expected to be

exponentially increasing with age. The Gompertz

6ssa.gov/oact/STATS/table4c6.html (accessed March 2,
2020).]

7Gerald E. Aardsma, “A General Theory of Aging: Part
II,” The Biblical Chronologist 10.3 (March 4, 2020): page 2.
www.BiblicalChronologist.org.

function gets away with this wherever the survival

curve is dominated by deaths due to aging because
the aging disease is characterized by an exponen-

tially increasing probability of death per unit time,
as we have previously seen.8

Mathematically, at least two terms are required
to describe what is really going on with real-life

survival curve data. One term is needed to de-
scribe deaths due to aging, and another term is

needed to describe extraneous deaths.

It might be thought that what is needed, then,

is (1) a Gompertz function to describe deaths due
to aging, and (2) some other function to describe

extraneous deaths. But, as it turns out, the Gom-
pertz function doesn’t describe aging deaths quite

properly either. The Gompertz function happens
to be a workable approximation for aging deaths,

but it is not quite right.

The General Theory of Aging clarifies that aging

is exponentially progressing congenital disease. In
developing the General Theory of Aging, two-cycle

engines were used to illustrate possible “congeni-
tal diseases” leading to “death” of the machines.9

Lack of lubricating oil leading to wear of piston
rings and consequent loss of compression was given
as one example. Ablation of the spark plug elec-

trode was given as a second example. And clogging
of the air filter was given as a third example.

Taking these three cases as representative of gen-

eral aging diseases, notice that they all require
some passage of time before the first death ap-

pears. For piston rings to wear sufficiently for
the machine to become inoperable, the machine
must be operated for some amount of time. For

the spark plug electrode to wear away by ablation,
some finite number of sparks must be generated,

and this means that the machine must be operated
for some amount of time. For the air filter to be-

come clogged, air must be pulled through it, and
this means that the machine must be run for some

amount of time.

For these three examples, there will be no deaths

due to these aging diseases when the machines are

8Gerald E. Aardsma, “A General Theory of Aging: Part
II,” The Biblical Chronologist 10.3 (March 4, 2020): pages
3–4. www.BiblicalChronologist.org.

9Gerald E. Aardsma, “A General Theory of Aging: Part
III,” The Biblical Chronologist 10.5 (March 31, 2020): pages
1–2. www.BiblicalChronologist.org.
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new. Said more precisely, the rate of death of these

machines due to each of these three aging diseases
when the machines are brand new is zero.

This seems to be a general property of aging dis-
eases. It seems intuitive that the initial probability

of death due to aging must be zero since initially
(i.e., at t = 0) there has not yet been any aging.

Curiously, the Gompertz function, which other-

wise describes aging so well, does not allow the
initial rate of death to be zero.

The Gompertz function has the differential
form:

dN/dt = −NKeAt (1)

In this equation, t is the time (generally specified
as the age of the organism for survival curves), N

is the number of individuals surviving at time t,
dN/dt is the population growth rate (the negative
sign in the equation says that the population is

shrinking [due to deaths]), K is the probability of
death per unit time at t = 0, and eAt specifies an

exponential increase in the probability of death per
unit time, the rapidity of which is controlled by A.

At t = 0, Equation 1 reduces to:

dN/dt = −N0K (2)

This is the initial rate of death, and it is not zero.

N0, the initial number of machines, is not zero, of
course. K is also not zero. Equation 1 shows that
if K were zero, then the rate of death would always

be zero for all time. This means that there would
be no death and no aging and all machines would

go on living forever. For aging to be present, K
cannot be zero. Thus, neither N0 nor K is zero,

and this means that the Gompertz function ex-
cludes the very real case of the initial rate of death

being zero for an aging disease.
Thus, surprisingly, the Gompertz function is

found to describe properly neither death due to
aging nor extraneous deaths.

Why, then, does the Gompertz function do a

good job of describing real-world, aging-dominated
survival curves? It is because it smears together

aging deaths and extraneous deaths, and extrane-
ous deaths can reasonably have a non-zero rate of

death at t = 0. There is, for example, no need for
any passage of time for a lightning strike to cause

a death. A lightning strike can kill a brand new
machine the instant it comes off of the assembly

line.

When aging deaths and extraneous deaths are

separated out, the Gompertz function is no longer
useful. We very much desire to separate aging

deaths from extraneous deaths because we wish
to study aging specifically, not deaths in gen-

eral. When studying aging specifically, extraneous
deaths act as a background interference, obscuring
what we are trying to learn about. It is, there-

fore, necessary to part company with the Gom-
pertz function at this point.

Beyond Gompertz

Having bid a nostalgic farewell to the Gompertz

function, we now find ourselves in need of a func-
tion which properly describes aging deaths. As it

turns out, a suitable function can be obtained by a
modification of the Gompertz function. The right

side of Equation 1 can be made to be zero at t = 0
as follows:

dN/dt = −NK(eAt
− 1) (3)

This equation is no longer the Gompertz function.
It is distinctly different from Equation 1, which de-

fines the Gompertz function. A retains its mean-
ing, as the exponential growth constant, but the

meaning of K is changed. It is no longer the prob-
ability of death per unit time at t = 0. For Equa-

tion 3, the probability of death per unit time at
t = 0 is, by design, zero. K is now simply a pro-

portionality constant, acting as a “gain” control
for the exponential increase from zero of the prob-
ability of death per unit time.

While Equation 3 is no longer the Gompertz

function, it retains everything the Gompertz func-
tion does correctly in regard to aging and adds in

the benefit of having a zero rate of death at t = 0.
It will be utilized in place of Equation 1 to describe
aging deaths from now on.

To describe real-life survival curve data accu-

rately, we need also a function which describes ex-
traneous deaths. The rate of extraneous deaths

is obviously complicated. For humans, it will be
different in a time of war than during peacetime,
for example. Extraneous deaths can have many

different causes and, consequently, many different
functional forms.

A general approach in such a case might be to

use a Taylor series to approximate the function de-
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scribing the rate of extraneous deaths. This gives:

dN/dt = −N [R + St + Tt2 + Ut3 + ...] (4)

I have found that dropping all but the first term
in this series works well in practice for lab data.

One expects this to work well in practice because,
for controlled laboratory survival curve data, one

chooses experimental conditions deliberately to
minimize extraneous deaths, and the strong (i.e.,
exponential) time dependence of death due to ag-

ing is expected to kill off the population before
higher order, t-dependent terms in Equation 4 can

grow large enough to have much impact on the
death rate.

This gives as an approximation for the rate of
extraneous deaths:

dN/dt = −NR (5)

In this equation, R specifies a constant prob-
ability of death per unit time due to extrane-

ous deaths. This approximation finds consider-
able support from its long-standing use within
the Gompertz–Makeham law of mortality, where

it supplies the Makeham term.
The equation describing real-life survival curve

data in this approximation, combining both deaths
due to aging and random (i.e., having a constant

probability of occurrence, independent of time) ex-
traneous deaths, is then:

dN/dt = −N [K(eAt
− 1) + R] (6)

In this equation, as K increases, the death rate due
to aging increases, and as R increases, the death

rate due to random extraneous deaths increases.
The solution of this differential equation is:

N = N0e
−[(K/A)(eAt

−At−1)+Rt] (7)

This is the model which I will use in all that fol-

lows, including, eventually, analysis of the survival
curve data for the long-lived mouse’s group. I will

call it the “Aardsma model” to be clear that we
are no longer using the Gompertz function.

Notice that this model takes into account only
one cause of aging. Additional terms are needed

in the model if two or more congenital aging dis-
eases are present having nearly equal dominance.

In practice, one expects only a single congenital

disease to show up at a time in most cases because

the exponential increase in death rate due to the
most dominant aging disease is likely to have killed

off the population before the next most dominant
congenital disease has begun to have much of an

effect on the death rate.

Notice also that, in this approximation, the to-
tal rate of deaths separates into a time depen-

dent component (due to aging deaths) and a time
independent component (due to constant back-

ground “noise” deaths).10 The constant back-
ground “noise” deaths are due to random events

like lightning strikes. Thus, the model’s applica-
bility is limited to survival curves where extrane-

ous deaths are due to random events. Rather than
calling these “random extraneous deaths,” I will

use the shorter “random deaths” to mean the same
thing from now on.

Weighting the Fit

Survival curve data points do not all have the same
measurement uncertainty. As a result, it is neces-

sary to weight the data points to obtain the opti-
mum fit of the model.

In any survival curve experiment, the fundamen-
tal observation is the number of deaths in a time
interval. For the actuarial life table data of Fig-

ure 1, the data points are for 1 year time intervals,
each interval corresponding to a given age. The

number of deaths which occurred in each age in-
terval can be obtained from the actuarial table.

For example, the 2016 actuarial table shows that,
for a total of 100,000 males dying in 2016, 230 died

in their 41st year (i.e., between their 40th and 41st
birthdays), and 462 died in their 51st year.

These numbers of deaths are not to be taken as
exact. Imagine breaking the total number of U.S.
males who died in 2016 (roughly 1,400,000) into

randomly chosen groups of 100,000. The number
of deaths in the 41st year age interval would not

be exactly 230 for every one of these groups. Ba-
sic counting statistics teaches that the number of

events counted from group to group will fluctuate
as the square root of the average for that age in-

10That Equation 3, describing aging, contains only time
dependent terms can be seen by carrying out a Taylor series
expansion of the exponential around t = 0, followed by the
subtraction.
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terval. This means that the 230 of the 41st year is

to be treated as 230 ± 15.2 deaths, and the 462 of
the 51st year as 462 ± 21.5 deaths.

This illustrates that the number of deaths cor-
responding to each age interval have varying mea-

surement uncertainties. When carrying out a
least-squares fit of a given model to measured data,
it is intuitive that data points having less uncer-

tainty should be given relatively more weight in
determining the optimum values of the model’s pa-

rameters (i.e., A, K, and R in Equation 7 for the
Aardsma model). A weighted least-squares anal-

ysis is, therefore, required. This is accomplished
in the usual way, by assigning each data point a

weight equal to the square of the reciprocal of its
uncertainty.

Error bars depicting the size of the uncertainties
associated with each data point are normally dis-
played graphically with the data. In the present

case of the 2016 actuarial data, the error bars are
too short to be visually discerned on the graph.

The error bar for the 51st year, for example, plots
as a vertical line through the data point at x=50.5

years and y=91.747 percent survivors. It has a to-
tal length of (2×21.5/100,000×100=) 0.0430%—

much too short to be seen on the graph.

For usual lab experiments, the number of ex-

perimental animals used is much smaller than the
number of males included in the 2016 actuarial life
table, and this results in much larger error bars

which are generally easily discerned graphically.

Performing the Least-Squares Fit

It is necessary to use a computer to carry out the
mathematical computations needed to perform the

least-squares fit. Algorithms for this task have
been around for a long time and do not need

to be coded from scratch. I have used functions
(FCHISQ, FUNCTN, and FDERIV) and subrou-

tines (CURFIT and MATINV) written by Beving-
ton in Fortran IV and published in 1969.11 Both

FUNCTN and FDERIV were adapted by me, as
intended by Bevington, to suit the present model.

11Philip R. Bevington, Data Reduction and Error Analy-

sis for the Physical Sciences (New York: McGraw-Hill Book
Company, 1969).

Post-fit Scaling of Uncertainties

When a weighted least-squares fit of the Aardsma
model to the 2016 actuarial life table data for males

is carried out, the fitted curve shown in Figure 2
results. (I have excluded the first data point from

this fit because the large infant mortality it reflects
is not included in any way in our simple model.)

The fit is visibly good (not great), but the good-
ness of fit parameter, reduced chi-square (χ2

ν), has

a value of 1316, which says the fit is statistically
extremely poor. For a good fit, χ2

ν is expected to

be near 1.
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Figure 2: Survival curve data for modern U.S. males (blue)
and fitted Aardsma model (red).

The large value of χ2
ν in this instance is not char-

acteristic of normal laboratory survival curve data.
It happens because the fit, in this instance, is ex-

tremely poor. Visually, it looks not all that bad,
but relative to the (microscopic) error bars on the

data points, it is terrible. For such tiny error bars,
the fitted curve resulting from a good fit would
be seen to pass through the approximate center

of each blue data point on the graph. Our fitted
curve does not do this. It is visibly off center much

of the time.

The reason our fitted curve doesn’t pass through
the centers of the data points is because our sim-

ple model does not adequately describe all that
is going on with this survival curve. Our simple

model adequately describes the deaths due to ag-
ing in this data set, and it adequately describes

random deaths in this data set. These two terms
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explain a great deal of what is going on with this

data set, but they do not explain everything. Be-
cause our model does not describe infant mortal-

ity, I excluded the first data point from the fit, as
mentioned above. To include infant mortality in

the model, another term would need to be added
to the differential rate of death equation (Equa-
tion 6). But, as there is a lot more than just in-

fant mortality going on with the extraneous deaths
in this data set, many more terms are needed for

a complete description. For example, notice that
beginning around age 20, the data points begin to

fall noticeably below the fitted curve. By roughly
age 35, the data points (represented by blue dots

having diameters much larger than their error bars
in all cases) and the fitted curve are barely even

touching one another. This says that there is a sys-
tematic loss of young men from this survival curve
which has nothing to do either with aging or with

random deaths. And indeed, according to the Cen-
ter for Disease Control and Prevention (CDC), for

the year 2016, 13.4% of deaths in the 20–44 years
age range were due to suicides, 9.6% were due to

homicides, and another 1.0% were due to HIV dis-
ease.12 Our simple model includes none of these

extraneous deaths.

Here again this 2016 actuarial survival curve for
U.S. males is seen to be different from controlled

laboratory experimental survival curves. The sorts
of extraneous deaths it involves do not generally

present themselves in lab experiments. Neither
mice nor fruit flies use guns lethally or commit sui-

cide, for example. But this survival curve does a
very good job of teaching some of the finer points of
modeling survival curve data sets via least-squares,

which is why I have chosen to use it in this article.

The goodness of fit, χ2
ν , can be improved by in-

creasing the uncertainties in the individual data
points. This is a deliberate workaround, having
no other purpose than to approximate more ac-

curately the uncertainties in the fitted model pa-
rameters A, K, and R. In effect, this workaround

shifts the blame for the poor fit over to the un-
certainties in the data points, saying that they are

unrealistically too small. In reality, of course, it is
the model which has the problem—it has too few

terms to describe what is really going on with the

12www.cdc.gov/healthequity/lcod/men/2016/all-races-
origins/index.htm (accessed 2020/04/10).

data set. By expanding the data points’ error bars,

all by a constant factor, we bring the data into
closer harmony with the model by making the fine

structure in the data, due to extraneous deaths,
become small relative to the (inflated) uncertainty

in the data points.13

This workaround does not affect the values of
the fitted parameters in any way. Only their esti-

mated uncertainties are affected. Multiplying all
error bars by a constant factor does not change the

relative weights of the various data points, so the
final fit is the same. Again, the reason for expand-

ing the error bars to get a better goodness of fit
value is purely to obtain more realistic estimates of

the uncertainties in the final parameters from the
available dataset. Expanding the error bars on the

data points by a constant factor increases the es-
timated uncertainties in the fitted parameters by
the expansion factor.

In practice, this workaround is implemented au-
tomatically by the computer program in all cases.

The factor by which the uncertainties of all the
data points need to be multiplied to obtain χ2

ν = 1

is just the square root of χ2
ν . Thus, the computer

program merely multiplies the estimated uncer-

tainties in the parameters by the square root of
χ2

ν at the conclusion of the least-squares analysis.

For the 2016 actuarial male survival curve, this
workaround increases the estimated uncertainties

in the fitted parameters by a factor of 36. For lab-
oratory survival curve data, this workaround gen-
erally results in a much more modest (10 or 20 per-

cent) adjustment of the estimated uncertainties of
the parameters.

Separation of Signal from Noise

Because the Aardsma model cleanly separates
deaths due to the aging disease from random

deaths, it allows these two contributions to the sur-
vival curve data set to be studied in isolation from

each other. The least-squares estimated survival
curve due to aging alone results from setting R to
zero in Equation 7 while otherwise using the values

13My son, Matthew, on reviewing a draft of this article for
me, summed up this workaround this way: “Basically what
is happening is that if you want to use this simple model to
approximate a complex population, you are going to ‘pay’
for it by increased uncertainties in the modeled parameters.”



Volume 10, Number 7 The Biblical Chronologist 7

for A and K found by the least-squares fit. Simi-

larly, by using the value for R found by the least-
squares fit in Equation 7 while setting K to zero,

the least-squares estimated survival curve due to
random deaths alone results. These two cases are

shown in Figure 3. �
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Figure 3: Survival curve data for modern U.S. males (blue
dots). The least-squares fit of the Aardsma model is shown
in red. Orange shows the model’s estimated survival curve
in the absence of aging and green shows its estimated sur-
vival curve in the absence of random deaths.
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